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Abstract

Titanium dioxide (TiO2) is a ubiquitous whitening compound widely used in topical products such 

as sunscreens, lotions and facial creams. The damaging health effects of TiO2 inhalation has been 

widely studied in rats, mice and humans showing oxidative stress increase, DNA damage, cell 

death and inflammatory gene upregulation in lung and throat cells; however, the effects on skin 

cells from long-term topical use of various products remain largely unknown. In this study, we 

assessed the effect of specific TiO2 nanoparticles (H2TiO7) on a human keratinocyte cell line 

(HaCaT). We performed a comparative analysis using three TiO2 particles varying in size (Fine, 

Ultrafine and H2TiO7) and analyzed their effects on HaCaTs. There is a clear dose-dependent 

increase in superoxide production, caspase 8 and 9 activity, and apoptosis in HaCaTs after 

treatment with all three forms of TiO2; however, there is no consistent effect on cell viability and 

proliferation with either of these TiO2 particles. While there is data suggesting UV exposure can 

enhance the carcinogenic effects of TiO2, we did not observe any significant effect of UV-C 

exposure combined with TiO2 treatment on HaCaTs. Furthermore, TiO2-treated cells showed 

minimal effects on VEGF upregulation and Wnt signaling pathway thereby showing no potential 

effect on angiogenesis and malignant transformation. Overall, we report here an increase in 

apoptosis, which may be caspase 8/Fas-dependent, and that the H2TiO7 nanoparticles, despite their 

smaller particle size, had no significant enhanced effect on HaCaT cells as compared to Fine and 

Ultrafine forms of TiO2.
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Introduction

Titanium dioxide (TiO2) is a globally produced oxide of titanium that is mined primarily 

from the naturally occurring minerals, rutile and anatase. It is primarily used as a pigment in 

several products ranging from paints, plastics and paper; to cosmetics, toothpastes and 

sunscreens due to its high refractive index, brightness and resistance to discoloration (Weir 

et al., 2012). During production, TiO2 is processed into a wide range of particle sizes before 

incorporation into several products. While initial research has indicated that normal sized 

TiO2 (>100 nm) has little to no effect on humans and animals; the demand for smaller sized 

TiO2 nanoparticles (<100 nm), which can be used in a wider range of applications and 

products has increased rapidly since 2005 (Hendren et al., 2011; Hu et al., 2010; Iavicoli et 

al., 2011; Robichaud et al., 2009; Tucci et al., 2013).

Due to the ubiquitous usage of these TiO2 nanoparticle-containing products, there is growing 

concern that the human population is at risk from over-exposure to TiO2 and the health risks 

that come with this exposure. It is widely accepted that nanoparticles are more dangerous 

due to their increased effectiveness in invading the body facilitated by a larger surface area 

and more potent chemical reactivity (Lam et al., 2004). The dust from TiO2 mining has been 

classified as an IARC Group 2B carcinogen by the International Agency for Research on 

Cancer (IARC) due to its ability to cause respiratory tract cancer in rats exposed to the 

powder (International Agency for Research on Cancer, 2010; Serpone & Kutal, 1993). There 

is also growing concern that the general population is at risk from direct usage of TiO2-

containing products and indirect exposure through food, garbage, water supply and of course 

by airborne means. While all forms and sizes of TiO2 may be hazardous to human health, 

several studies have detailed the effects of nanoparticle inhalation that is primarily due to its 

small size. Inhaled nanoparticles have been found to cause an increase in oxidative stress; 

DNA damage; and the upregulation of pro-inflammatory and pro-apoptotic genes in human 

lung and endothelial cells (Agostini et al., 2011; Carinci et al., 2003; Manke et al., 2013; 

Peters et al., 2004). Inhaled nanoparticles are known to cross cell membranes infecting 

different areas of the body. They have been found in lung alveolar regions where they induce 

inflammation that triggers the development of granulomas; a precursor to pulmonary fibrosis 

and other forms of lung damage (Manke et al., 2013; Oberdorster et al., 2005; Shvedova & 

Kagan, 2010; Shvedova et al., 2005; Shvedova et al., 2008; Song et al., 2011; Turner-

Warwick, 1963).

While the majority of the present research has explored the effects of nanoparticle inhalation 

on lung and respiratory tract tissue, there is still little understanding of the long-term effects 

of exposing skin cells to TiO2 nanoparticle-containing products such as paper, rubber, 

ceramics, sunscreens, make-up and other cosmetic products. Several in vivo and in vitro 
studies have focused on the ability of different forms of TiO2 to penetrate the dermal skin 

layer, and while the majority of research would indicate that this does not occur; there are 
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data that indicate damaged skin can become susceptible to TiO2 penetration (Miquel-

Jeanjean et al., 2012; Schulz et al., 2002; Senzui et al., 2010; Tan et al., 1996). These results 

may vary based on the type of dermal damage and the overall characteristics of the skin. 

Exploring the TiO2 nanoparticle dermal absorption theory is vital because skin exposure and 

contact is the most significant exposure route to TiO2 nanoparticles for the general 

population (Tucci et al., 2013). The consensus is that once TiO2 nanoparticles enter 

mammalian cells, through any route, it triggers a cellular reaction that includes an increase 

in oxidative stress; reduction in cell viability and proliferation; increase in cytokine 

production; and apoptosis: all potential precursors to malignancy, fibrosis and cancer.

The purpose of this study was to investigate the cytotoxic effects of TiO2 nanoparticles 

(H2TiO7) on a human keratinocyte cell line and compare it to two other TiO2 particles (Fine 

and Ultrafine). We analyzed the physiological and pathological processes that may be 

affected by TiO2 exposure and by the size of the particles.

Materials and methods

Chemicals and reagents

Antibodies against Caspase 8 and 9, Bcl-2, Bid, pEGFR, EGFR, pAkt, Akt, β-Catenin, E-

Cadherin, p53 and peroxidase-labeled secondary antibodies were obtained from Cell 

Signaling Technology (Danvers, MA). Antibodies for GAPDH and FLIP were obtained from 

Santa Cruz Biotechnologies (Dallas, TX), and the β-actin antibody was obtained from 

Sigma-Aldrich (St. Louis, MO). Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) was 

obtained from Calbiochem (La Jolla, CA). Thiazolyl Blue Tetrazolium Bromide (MTT) and 

aminoguanidine (AG) were obtained from Sigma-Aldrich (St. Louis, MO). The oxidative 

probes, dichlorofluorescein diacetate (DCF-DA), 4,5-diaminofluorescein diacetate (DAF-

DA) and dihydroethidium (DHE) were from Molecular Probes (Eugene, OR).

Cell culture

All cell lines were obtained from American Type Culture Collection (Manassas, VA). The 

immortalized human keratinocyte cell line (HaCaT) was cultured in Dulbecco’s Modified 

Eagle medium (Thermo Scientific, Waltham, MA) supplemented with 10% fetal bovine 

serum (FBS), 2mM L-glutamine, 100 U/mL penicillin and 100 mg/mL streptomycin. Human 

bronchial epithelial Beas-2B cells were cultured in Dulbecco’s modified Eagle medium 

(Sigma-Aldrich) supplemented with 5% FBS, 2mM L-glutamine, 100 U/mL penicillin and 

100 µg/ml streptomycin. The human lung fibroblasts CRL-1490 were maintained in Eagle’s 

Minimum Essential medium (MEM) supplemented with 10% FBS, 100 U/mL penicillin and 

100 µg/mL streptomycin. All cell lines were grown in a 5% CO2 environment at 37 °C.

Titanium dioxide characterization, preparation and cell treatment

TiO2 particles H2TiO7, Fine (F) and Ultrafine (UF) were received as a gift from West 

Virginia University. The particle size of F-TiO2 is 1 mm composed of 100% rutile 

(originally purchased from Sigma (#224227)). The particle size of UF-TiO2 is 21 nm 

composed of 80% anatase and 20% rutile. The particle size of H2TiO7 is 12 nm and 

composed of 100% anatase. The stock solution of H2TiO7 nanoparticles (NP), Fine (F) and 
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Ultrafine (UF) particles (2 mg/mL) was prepared by dissolving 10 mg of powder in 5mL 

sterile PBS. This solution was then dispersed by sonicating (20% amplitude) for 90 s at 5 s 

intervals on ice to prevent aggregation and precipitation. The stock solutions were kept at 

4 °C and used within 1–2 weeks for the experiments. Prior to each experiment, the stock 

solution was sonicated on ice as mentioned above and then immediately diluted into the 

working concentrations with medium. Titanium dioxide at different concentrations (0.1, 1, 

10, 25 and 100 µg/cm2) was calculated based on the surface area of the plate used (6-well, 

12-well or 96-well plate). After treatments at various time points, plates were analyzed, or 

cells were harvested and prepared for protein analysis.

Reactive oxygen species/Reactive nitrogen species (ROS/RNS) detection

Cellular ROS/RNS production was determined fluorometrically using DHE, DCF-DA and 

DAF-DA as fluorescent probes for superoxide, peroxide and nitric oxide, respectively. After 

specific treatments, HaCaT cells were incubated with the probes (5 µM) for 30 min at 37 °C, 

after which they were washed, resuspended in PBS and analyzed for fluorescence intensity 

using All-In-One Microplate Reader (BioTek Instruments Inc.) at the excitation/emission 

wavelengths of 485/535 for DHE and 485/610 nm for DCF and DAF.

Caspase 8/9 assay

Caspase 8 and 9 activities were detected using the CaspGLOW™ Fluorescein Active 

Caspase-8 and −9 Staining Kit, respectively (BioVision, Milpitas, CA) according to the 

manufacturer’s instructions. Briefly, HaCaT cells were seeded in 96-well plates at a 

concentration of 6.0 × 103 cells/well and treated with titanium dioxide for six hours. Cells 

were then trypsinized and 300 µL of each sample was placed in Eppendorf tubes. One 

microliter of FITC-LEHD-FMK was added to each tube and incubated for 30 min at 37 °C. 

Cells were then centrifuged at 3000 rpm for five minutes and the supernatant was removed. 

Samples were then resuspended in Wash Buffer before being centrifuged as above. For 

analysis, samples were resuspended in 100 µL Wash Buffer and then plated on a black 

microtiter plate. Fluorescence intensity was measured at 485/535 nm. Wells containing 

unlabeled cells were used as control. The caspase inhibitor Z-VAD-FMK (1 µL/mL) was 

used as a negative control by pre-treating cells for one hour to inhibit caspase activation.

Western blotting

After specific treatments, HaCaT cells were incubated in lysis buffer containing 20 mM 

Tris–HCl (pH 7.5), 150 mM NaCl, 1mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM 

sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4, and 1 mg/mL leupeptin 

(Cell Signaling), 100 mM PMSF, and a commercial protease inhibitor (Sigma-Aldrich) and 

phosphatase inhibitor (Pierce Biotechnology) mixture for 20 min on ice. After insoluble 

debris was precipitated by centrifugation at 10 000 rpm for 10 min at 4°C, the supernatant 

was collected and assayed for protein content with bicinchoninic acid assay kit (Thermo 

Scientific). Equal amount of proteins per sample (20 µg) were resolved on 10% SDS-PAGE 

and transferred onto 0.45-mm nitrocellulose membranes. The transferred membranes were 

incubated overnight at 4°C with appropriate primary antibodies diluted in 5% nonfat dry 

milk in Tris-buffered saline and Tween (25 mM Tris–HCl [pH 7.4], 125 mM NaCl, 0.05% 

Tween-20), followed by horseradish peroxidase-conjugated isotype-specific secondary 
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antibodies for one hour at room temperature. The immune complexes were detected by 

chemiluminescence (Supersignal West Pico; Pierce Biotechnology, Rockford, IL) using a 

MyECL Imager (Thermo Scientific), and quantified by imaging densitometry using ImageJ 

(NIH, Image analysis using Java) digitizing software. Mean densitometry data from 

independent experiments were normalized to the control.

Apoptosis assay

Apoptosis was determined by Hoechst 33342 DNA fragmentation assay. Briefly, HaCaT 

cells were incubated with 10 µg/mL Hoechst 33342 nuclear stain (Life Technologies, 

Carlsbad, CA) for 30 min at 37 °C, and apoptosis determined by scoring the percentage of 

cells having intensely condensed chromatin and/or fragmented nuclei by fluorescence 

microscopy (EVOS All-in-one digital inverted fluorescence microscope) with software. 

From random fields 1000 nuclei were analyzed for each sample. The apoptotic index was 

calculated as apoptotic nuclei/total nuclei × 100 (%) using ImageJ software (Java image 

processing, NIH).

UV radiation

Plated HaCaT cells were exposed to UV-C irradiation from a 254 nm UV-C GE light bulb 

under a Labgard Class II Type A2 Biological safety cabinet (hood). Culture plates were 

irradiated with ∼4, 8 and 40 J/m2 for the 30 min, 1 h and 5 h time points accordingly.

MTT assay (cellular viability)

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric 

assay was performed in 96-well plates. Briefly, HaCaT cells were seeded in 96-well plates at 

a concentration of 6.0 × 103 cells/well and treated with titanium dioxide for 24 h. Twenty 

microliter of MTT solution (5 mg/mL) was then added to each well for three hours at 37 °C. 

The MTT solution was discarded and 100 µL dimethyl sulphoxide (DMSO) was added for 

30 min while shaking to dissolve insoluble formazan crystal. Absorbance was measured at 

570 nm. Cell proliferation assay - HaCaT, Beas-2B and CRL-1490 cells were plated in 96-

well plates at a density of 1 × 103 cells/well in growth medium and were incubated for 

various time points (24 and 48 h). After specific treatments, the incubating medium was 

replaced with 50 µL of 1× CyQUANT™ dye-binding solution (Invitrogen) and incubated for 

60 min at 37 °C. The fluorescence intensity of each sample was measured at the excitation 

and emission wavelengths of 485 and 535 nm, respectively.

Enzyme-linked immunosorbent assay (ELISA)

HaCaT cells were plated in a six-well plate at a density of 2 × 105 cells/well in culture 

medium and incubated overnight before the cells were subjected to treatment. After the 

treatment, cell supernatants were collected and analyzed for VEGF protein levels using a 

Human VEGFA ELISA kit (Thermo Scientific) per the manufacturer’s protocol. Briefly, cell 

samples or reference standards (50 µL) were added to the wells of a microplate that was pre-

coated with a monoclonal antibody specific to VEGF and incubated for 2 h at room 

temperature. After washing away unbounded substances, an HRP-conjugated polyclonal 

antibody against VEGF was added to the wells and incubated for 2 h at room temperature. 
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After washing and adding 100 µL of substrate solution, optical density was determined on a 

microplate reader at 450 nm.

Collagen assay

Cellular collagen content was determined by Sircol® assay (Biocolor Ltd., Belfast, UK), 

according to the manufacturers’ protocol. Briefly, Sirius red reagent (50 µL) was added to 

Beas-2B and CRL-1490 cell culture supernatants (50 µL) and mixed for 30 min. The 

collagen–dye complex was precipitated by centrifugation at 13 000 g for 5 min, washed with 

ethanol and dissolved in 0.5 M NaOH. The samples were read for absorbance at 540 nm.

Statistical analysis

The data represent means (±S.E.M.) from three or more independent experiments. Statistical 

analysis was performed by Student’s t test at a significance level of p < 0.05.

Results

Effects of Fine (F), Ultrafine (UF) and H2TiO7 on cellular oxidative and nitrosative stress

The effects of F-TiO2, UF-TiO2 and H2TiO7 on cellular superoxide (·O2
−), hydrogen 

peroxide (H2O2) and nitric oxide (NO) levels were analyzed using specific fluorescent 

probes at three different time points. Figure 1(A) indicates that at the 15 min time-point 

there is a dose-dependent increase in hydrogen peroxide and superoxide levels over control 

for all three forms of TiO2. However, there is no significant increase in NO levels for either 

form of TiO2. In addition, no significant differences were observed in the effects elicited by 

F, UF and H2TiO7 on the skin cells. Figure 1(B and C) indicates a dose-dependent increase 

in superoxide levels at both the 30 min and one hour time points by all three forms of TiO2 

whereas there was a gradual decrease in hydrogen peroxide and NO levels. No significant 

differences were observed in the effects of F-TiO2 and UF-TiO2 versus H2TiO7.

Effects of F-TiO2, UF-TiO2 and H2TiO7 on apoptosis regulatory proteins

ROS accumulation in response to an external cell stressor can be followed by the activation 

of apoptotic cell death pathways (extrinsic or intrinsic). These pathways typically culminate 

with the activation of initiator caspases (caspase 8 and 9) that in turn activate additional 

caspases downstream which function in cell death. To determine if the upregulation of 

superoxide that we observe is triggering caspase activity toward apoptosis, HaCaT cells 

were treated with TiO2 along with Z-VAD-FMK, a pan-caspase inhibitor. Caspase activity 

assay results indicate that at six hours there is a significant increase in caspase 8 activity as 

compared to control for all TiO2 forms (Figure 2A). The increase in caspase 8 activity is 

ablated with Z-VAD-FMK pretreatment, verifying the effect of F-TiO2, UF-TiO2 and 

H2TiO7 on caspase 8. However, there is no delineation between the effect seen with F-TiO2, 

UF-TiO2 and H2TiO7 or the four doses administered. Figure 2(B) indicates that there were 

increases seen in active caspase 9 after TiO2 treatment; however, the differences were much 

smaller as compared to caspase 8 activity levels (two-folds lower). Interestingly, caspase 9 

activity was ablated when cells were treated with the higher dose of TiO2 (25 µg/cm2) for all 

three forms of TiO2. Furthermore, the effect of TiO2 on caspase 8 and 9 protein levels was 

analyzed by Western blotting. Figure 2(C) shows that at 24 h there are no changes in the 
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cleavage and activation of caspase 8 or 9 for either form of TiO2 as compared to control. The 

effect of all three TiO2 particles was also assessed on other apoptosis regulatory proteins 

including FLIP, Bid and Bcl-2. Downregulation of the anti-apoptotic protein Bcl-2 by all 

three TiO2 particles specifically at the treatment doses of 1 and 10 µg/cm2 was observed. 

Treatment with TiO2 particles also led to the downregulation of the pro-apoptotic protein 

Bid and had minimal effects on the expression of the anti-apoptotic protein, FLIP.

Effects of F-TiO2, UF-TiO2 and H2TiO7 on apoptosis

To determine if the TiO2-induced superoxide accumulation and increase in caspase activity 

that we observed in HaCaTs leads to cell death, we next analyzed apoptosis. We 

characterized the apoptotic response of HaCaT cells treated with varying concentrations 

(0.1–25 µg) of all three forms of TiO2. Apoptosis was analyzed after 12 h and 24 h by 

Hoechst 33342 assay. TiO2 treatment caused a significant increase in apoptosis versus 

control at both the 12 and 24-h time points (Figure 3(A and B)). There were no clear 

differences in the effect on cell death between F-TiO2, UF-TiO2 and H2TiO7. However there 

was a significant reduction in cell death at both time points when cells were treated with the 

dose of 25 µg of F-TiO2, UF-TiO2 and H2TiO7 indicating that 25 µg might be a saturated 

dose that has only minor effects on HaCaT cells. We further analyzed the effects of ROS and 

NO modulators on TiO2-induced apoptosis. HaCaT cells were pretreated with either 

Aminoguanidine (AG), a nitric oxide synthase (NOS) inhibitor, or the superoxide dismutase 

(SOD) mimetic and peroxynitrite scavenger, MnTBAP, followed by treatment with -TiO2, 

UF-TiO2 and H2TiO7 for 24 h. Figure 3(C) shows an increase in cell death over control for 

all three forms and all doses of TiO2. However, pretreatment with either AG or MnTBAP 

had no significant effect on TiO2-induced apoptosis. We next assessed the combined effect 

of short-wavelength ultraviolet (UV-C) rays pre-exposure and TiO2 treatment on apoptosis. 

Numerous published reports have indicated that UV exposure (UV-A, UV-B, UV-C) can 

enhance apoptosis by increasing DNA damage. To determine if UV exposure exacerbates 

the effect of various TiO2 particles on cell death, HaCaTs were exposed to UV-C rays for 

three different time points (∼4, 8 and 40 J/m2) prior to treatment with three different doses 

of F-TiO2, UF-TiO2 and H2TiO7. Figure 3(D) shows no difference in the percentage of cell 

death observed after TiO2 treatment with pre-exposure to UV-C at the various time points 

(0.5, 1 and 5 h) in comparison to the cell death observed after TiO2 treatment alone (Figure 

3(A and B)).

Effects of F-TiO2, UF-TiO2 and H2TiO7 on cell proliferation and angiogenesis

To determine if TiO2 has carcinogenic potential when exposed to keratinocytes, we analyzed 

the effect of TiO2 particles on cell viability and proliferation using MTT and CyQUANT 

assays, respectively. Figure 4(A) demonstrates that F-TiO2 and UF-TiO2 had positive effects 

on cell viability at 24 h, while the opposite effect was observed when cells were treated with 

H2TiO7. Furthermore, cell proliferation was negatively affected in response to all treatment 

doses of F-TiO2, UF-TiO2 and H2TiO7 at the 48-h time-point, with the 25 mg/cm2 dose of 

H2TiO7 having the most pronounced effect (Figure 4B). To assess the effect of TiO2 on 

angiogenesis in keratinocytes, we analyzed the central angiogenic mediator, vascular 

endothelial growth factor (VEGF) levels. Figure 4(C) demonstrates that there was no 
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significant change in cellular VEGF levels in cells treated with various doses of all three 

TiO2 particles at the 24-h time point.

Effects of F-TiO2, UF-TiO2 and H2TiO7 on cell survival and differentiation pathways

The effect of F-TiO2, UF-TiO2 and H2TiO7 was analyzed on epidermal growth factor 

receptor (EGFR), a known stimulator of cell growth when activated by phosphorylation, and 

Akt, a serine/threonine protein kinase that functions in several cellular processes including 

cell death and proliferation. At the six-hour time point, TiO2 particles had a minimal effect 

on phosphorylated EGFR levels, while Akt phosphorylation and hence activation increased 

specifically with 10 µg/cm2 UF-TiO2 and 1 mg/cm H2TiO7 doses (Figure 5A). HaCaT cells 

were then treated with varying concentrations of UF-TiO2 and H2TiO7 for 12 and 24 h, and 

probed for differentiation marker proteins including E-Cadherin and β-Catenin. Figure 5(B) 

demonstrates that there is minimal effect of UF-TiO2 and H2TiO7 treatments on the 

expression of these proteins. E-Cadherin protein expression is downregulated at 12 h and β-

Catenin is downregulated at 24 h as compared to control in response to both H2TiO7 and 

UF-TiO2 treatments. At both 12 and 24-h time-points, p53 expression remains unchanged in 

all conditions.

Effects of F-TiO2, UF-TiO2 and H2TiO7 on human lung epithelial and fibroblast cell 
proliferation

Since the majority of TiO2 nanoparticle research both in vitro and in vivo has focused on the 

effect of these particles on lung and throat tissue, we analyzed the effects of the three forms 

of TiO2 on lung cells. Beas-2B (human lung epithelial) cells and CRL-1490 (lung fibroblast) 

cells were treated with varying doses of F-TiO2, UF-TiO2 and H2TiO7. All TiO2 particles 

showed an inhibitory effect on Beas-2B cell proliferation at both the 24 h and 48 h time-

points (Figure 6A). Figure 6(B) shows a moderate increase in cell proliferation in CRL-1490 

cells. To further determine the potential of TiO2 to induce proliferation and invasion in these 

two cell lines, we analyzed collagen levels using Sircol® assay after treatment for 24 h with 

varying doses of TiO2. Figure 6(C) shows fluctuating changes in collagen levels as 

compared to control in both cell lines at various doses and with the different forms of TiO2. 

The most pronounced reduction in collagen levels was observed with the lowest (0.1 µg/

cm2) and highest (100 µg/cm2) doses of each F-TiO2, UF-TiO2 and H2TiO7. This data 

correlated with cell proliferation results for Beas-2B cells but not for CRL-1490 cells. TiO2 

particles inhibited Beas-2B cell proliferation and endogenous collagen levels, whereas the 

effect on CRL-1490 cells is not conclusive.

Discussion

Due to the widespread use of TiO2 nanoparticles in several products including cosmetics and 

other topical products, it is important to understand the potential cytotoxic effects of TiO2 

due to long-term use of these products. While TiO2 has been shown to be a lung and throat 

carcinogen when inhaled and/or swallowed through TiO2 mining or product use, the long-

term effects of physical contact with the dermis through topical product usage is 

understudied. Even though the majority of research articles report no skin penetration by 

TiO2 nanoparticles, there is still evidence that damaged dermal layers can facilitate TiO2 
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absorption, and absorption rates and levels vary based on the age and quality of the dermis 

layer that is exposed to TiO2 nanoparticles. Because direct skin contact is the most common 

risk factor for TiO2 nanoparticles exposure to the human population, it is pertinent that we 

fully understand the long-term effects of exposure to TiO2.

The skin is the largest organ in the body and provides protection through two layers: the 

epidermis and dermis. It serves as the first line of defense against topically applied 

substances, and functions in the metabolism of any external reagents that penetrate the skin 

(Tucci et al., 2013). There are several cancer pathologies that originate through the skin 

layers that include melanoma, carcinogenesis and dermatitis, which is initiated by cytokine 

release and dermal cell inflammation facilitated by an increase in ROS generation. Several in 
vitro studies have reported oxidative stress induction and cell death in mammalian cells 

treated with TiO2 nanoparticles. In this study, we analyzed the effects of F-TiO2, UF-TiO2 

and H2TiO7 on oxidative stress levels in human skin cells (keratinocytes). We observed a 

significant dose-response increase in superoxide levels for all three particles used at 15 and 

30 min, as well as the 1 h time point (Figure 1). It is known that ROS induction can mediate 

and regulate caspase-related cell death pathways, specifically Fas-mediated apoptotic cell 

death that proceeds through the FADD complex pathway by way of caspase 8 activation 

(Izeradjene et al., 2005; Thornberry & Lazebnik, 1998; Yoo et al., 2012). Specifically, an 

increase in superoxide production has been repeatedly shown to be a precursor to TiO2-

induced cell death in various cell lines (Masoud et al., 2015; Niska et al., 2015). It is feasible 

that the reason ROS scavengers used in Figure 3 had no effect on TiO2-induced apoptosis in 

HaCaTs is because of the difference in time points used to analyze apoptosis in Figure 3 (12 

and 24 h) versus ROS production in Figure 1 (15 and 30 min, 1 h). The data clearly shows 

that superoxide levels increase rapidly immediately following TiO2 treatment, which may be 

the required early precursor to the cell death we observe at the later time points.

Caspase data indicated that TiO2 treatment significantly activated caspase 8, and to a lesser 

extent caspase 9, as compared to control (Figure 2(A and B)). This was corroborated by 

utilizing a pan-caspase inhibitor, Z-VAD-FMK, which attenuated the caspase 8 activation 

observed with TiO2 treatment. H2TiO7-mediated activation of caspase 8, indicates that the 

cell death observed in HaCaT cells may be induced by Fas as previously reported (Yoo et al., 

2012). While an increase in oxidative stress is consistently shown in TiO2-related studies as 

mentioned above, the absence of this ubiquitous effect in our system was further 

corroborated by using NOS (AG) and SOD mimetic/peroxynitrite inhibitor (MnTBAP). 

Both inhibitors had no significant effect on HaCaT cell death observed in response to TiO2 

treatment (Figure 3) suggesting that TiO2-induced apoptosis in HaCaT cells is not solely 

dependent on oxidative stress.

The various TiO2 particles significantly induced apoptosis in HaCaT cells (Figure 3) but 

there was minimal activation and involvement of various apoptosis-related proteins 

including FLIP, Bid and Bcl-2 at the 24-h time-point (Figure 2). Analysis of the tumor 

suppressor and apoptotic initiator p53 indicated no change in expression over control (Figure 

5). Furthermore, there was no delineation between F-TiO2, UF-TiO2 and H2TiO7, thereby 

indicating that particle size played no significant role in the apoptosis inducting effects of 

TiO2. The FLIP protein is known to interact with pro-caspase 8 and the FADD complex in 
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both a pro- and anti-apoptotic manner (Dohrman et al., 2005). Although FLIP protein was 

not affected, activation of caspase 8 indicated that TiO2-induced cell death observed in 

HaCaT cells may be mediated through the Fas-FADD-apoptotic pathway. Ultraviolet (UV) 

rays can contribute to increased free radical production and accumulation thereby 

stimulating skin inflammation. It has been reported that pre-exposing cells to UV radiation 

can enhance the cytotoxicity effects of nanoparticles, specifically TiO2 (Cai et al., 1992; 

Zhang & Sun, 2004). Kang et al. reported that in the presence of UVA, TiO2 nanoparticle 

treatment caused a significant decrease in cell viability, increased ROS and induced 

activation of pro-apoptotic proteins such as caspase 9 and 3 in peripheral blood lymphocytes 

(Kang et al., 2011). However, our data indicates that UV-C exposure at the indicated time 

points had no significant effect on TiO2-induced apoptosis in HaCaT cells (Figure 3(D)). It 

must be pointed out that UV-C rays are significantly weaker than the ozone-penetrating UV-

A and UV-B rays humans are exposed to daily. Despite UV-C rays being weaker rays that 

emit less irradiation; there are several publications that utilize these rays in studies that result 

in significant ROS accumulation and apoptosis (Dunkern et al., 2001; Jiang et al., 2014). 

Future experimental analysis utilizing UV-A and UV-B radiation may unearth an additive 

effect with TiO2 that enhances apoptosis or cell proliferation toward a malignant phenotype.

Cell proliferation, invasion, migration and angiogenesis are key characteristic features for 

malignant transformation and tumor development. TiO2 particles had a clear negative effect 

on cell proliferation as compared to control. The major cellular regulator of angiogenesis, 

VEGF, which functions in vascular permeability and angiogenesis by inducing cell 

proliferation, migration and elongation, network formation and branching of endothelial 

cells (Azad et al., 2013; Carmeliet, 2000), was also analyzed. F-TiO2, UF-TiO2 and the 

H2TiO7 had no significant effect on cellular VEGF levels (Figure 4(C)). In addition, we 

observed changes in pAkt and pEGFR protein expression levels in TiO2-treated cells (Figure 

5). Akt and EGFR are both involved in apoptosis, cell proliferation, differentiation and 

migration; indicating a possible link with malignancy formation in TiO2-treated skin cells. 

To investigate this further, we analyzed the possibility of TiO2 having a metastatic effect on 

HaCaT cells precluded by cell migration and differentiation. The canonical Wnt signaling 

pathway functions in embryonic development by regulating gene transcription for cell 

proliferation, differentiation and specifically migration. The Wnt signaling pathway plays a 

key role in carcinogenesis and tumor development characterized by the upregulation or 

mutation of the β-Catenin gene; a mutation that is found in a wide variety of human cancers 

including melanoma, pancreatic and ovarian cancer (Anastas & Moon, 2013; Taketo, 2004). 

In conjunction with the Wnt signaling pathway, epithelial mesenchymal transition (EMT) is 

a process by which cells become invasive and migratory leading to metastasis that is 

initiated by the loss of E-Cadherin function/expression. β-Catenin dysregulation coupled 

with E-Cadherin down-regulation leads to the loss of cell-cell adhesion, invasion and 

migration; important cellular changes seen in several malignancies including fibrosis, breast 

cancer and melanoma (Chaffer & Weinberg, 2011; Singh & Settleman, 2010). Analysis of 

the expression of both of these critical proteins indicated minor changes in TiO2-treated cells 

versus control with no overexpression of β-Catenin or downregulation of E-Cadherin 

(Figure 5). The expression pattern of both β-Catenin and E-Cadherin here indicates that F-
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TiO2, UF-TiO2 and H2TiO7 particles do not regulate Wnt signaling pathway or EMT, and 

therefore do not affect metastasis and malignancy in HaCaT cells.

TiO2 is mined from minerals such as rutile and anatase. The dust released from this mining 

process has been classified as a Group 2B carcinogen by the IARC due to the possibility of 

it being carcinogenic to humans (International Agency for Research on Cancer, 2010). 

Recent evidence has shown that this TiO2 dust can cause respiratory tract cancer in mice (Hu 

et al., 2010; Lam et al., 2004), and lung cell injury with mutation and fibrosis in humans 

who work in these dusty environments (Hendren et al., 2011; Robichaud et al., 2009). 

Several in vivo studies have also linked exposure to airborne nanoparticles with pulmonary 

fibrosis development due to inflammation and the formation of granulomas that migrate and 

invade lung tissue (Azad et al., 2013; Shvedova et al., 2005; Shvedova et al., 2008; Wang et 

al., 2010; Warheit et al., 2004). We analyzed the effects of F-TiO2, UF-TiO2 and H2TiO7 

particles on two different types of lung cells (epithelial and fibroblast). We observed a 

decrease in collagen levels in both lung cell lines in response to TiO2 treatment (Figure 6). 

This result suggests that short-term exposure of lung tissue to TiO2 has no deleterious 

effects. The effect on cell proliferation was inhibitory in Beas-2B cells but was not 

conclusive for CRL-1490 lung cells. The effect of H2TiO7 was not different from F-TiO2 or 

UF-TiO2, confirming in different cell-lines that smaller particle size and increased surface 

area of H2TiO7 does not translate into more deleterious effects on various cellular properties.

Conclusions

In summary, F-TiO2, UF-TiO2 and H2TiO7 particles induce apoptosis in keratinocytes 

through caspase 8 and the Fas/FADD pathway. There is a dose-dependent increase in 

superoxide accumulation and caspase 8 and 9 activity; which are followed by a similar trend 

in apoptosis. However there was no significant difference in the effects of H2TiO7 

nanoparticles as compared to F-TiO2 and UF-TiO2. We also report that the various TiO2 

particles had no consistent effects on cell proliferation, viability and angiogenic/migration/

invasion potential in HaCaT keratinocytes and two different lung cell types (Beas-2B and 

CRL-1490). The increased carcinogenic potential of H2TiO7 due to its increased surface 

area and smaller particle size, does not translate into more deleterious effects in skin and 

lung cells, as compared to the other forms of TiO2. While this study does not focus on the 

long-term effects that exposure to TiO2 may have on skin cells; the inconsistent and 

inconclusive results here corroborate previously published data on the effect of TiO2 on skin 

cells. This data reaffirms the accepted conclusion that the effect of TiO2 is dependent on the 

integrity of the epidermal skin layer (more effective on damaged tissue), and the genetic 

characteristics of the skin layer being exposed to the nanoparticles. Further analysis using 

long-term exposure studies is definitely needed to determine the cytotoxic or malignant 

potential of TiO2 nanoparticles on human skin cells. This analysis will allow us to make 

conclusive determinations on what effect, if any, chronic exposure to TiO2 is having on the 

human populous.
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Figure 1. 
Effects of F-TiO2, UF-TiO2 and H2TiO7 on cellular oxidative stress. Subconfluent (90%) 

monolayers of HaCaT cells were treated with varying doses (0.1, 1, 10 and 25 µg) of F-TiO2 

(F), UF-TiO2 (UF) and H2TiO7 (NP) for (A) 15min, (B) 30 min and (C) 1h. ROS/RNS levels 

were analyzed by spectrofluorometric measurement of DAF, DCF and DHE fluorescence for 

NO, hydrogen peroxide and superoxide, respectively. Graphs represent relative fluorescence 

intensity over untreated control. Data are mean ± S.E.M. (n = 3). *p < 0.05.
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Figure 2. 
Effects of F-TiO2, UF-TiO2 and H2TiO7 on caspase activation and apoptosis. Subconfluent 

(90%) monolayers of HaCaT cells were either left untreated or pretreated with zVAD-FMK 

(10 µM) for 1 h followed by treatment with varying doses (0.1, 1, 10 and 25 µg/cm2) of F-

TiO2 (F), UF-TiO2 (UF) and H2TiO7 (NP) for 6 h and analyzed for (A) caspase 8 and (B) 

caspase 9 activity using specific fluorescent substrates IETD-AMC and LEHD-AMC, 

respectively. (C) Subconfluent (90%) monolayers of HaCaT cells were treated with varying 

doses (0.1, 1 and 10 µg/cm2) of F-TiO2 (F), UF-TiO2 (UF) and H2TiO7 (NP) for 24 h before 

cell lysates were acquired and analyzed for apoptotic-related protein expression by Western 

blotting. GAPDH was used as a loading control.
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Figure 3. 
Effects of ROS modulators and UV-C pretreatments on TiO2-induced cell death. 

Subconfluent (90%) monolayers of HaCaT cells were treated with varying doses (0.1, 1, 10 

and 25 µg/cm2) of F-TiO2 (F), UF-TiO2 (UF) and H2TiO7 (NP) for (A) 12 h and (B) 24 h 

and analyzed for apoptosis by Hoechst 33342 assay. Representative fluorescence 

micrographs of treated cells stained with the Hoechst dye are shown. Apoptotic cells 

exhibited shrunken and fragmented nuclei with bright nuclear fluorescence. (C) 

Subconfluent (90%) monolayers of HaCaT cells were either left untreated or pretreated with 

AG (300 µM) or MnTBAP (100 µM) for 1 h followed by treatment with varying doses (0.1, 

1 and 10 µg/cm2) of F-TiO2 (F), UF-TiO2 (UF) and H2TiO7 (NP) for 24 h and analyzed for 

apoptosis by Hoechst 33342 assay. (D) Cells were seeded as above and exposed to UV-C 

light (∼4, 8 and 40 J/m2) for three different time points (30 min, 1h and 5h) followed by 

treatment with varying doses (0.1, 1 and 10 µg/cm2) of F-TiO2 (F), UF-TiO2 (UF) and 

H2TiO7 (NP) for 24 h and analyzed for apoptosis as above. Data are mean± S.E.M. (n= 3). 

*p < 0.05.
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Figure 4. 
Effects of F-TiO2, UF-TiO2, and H2TiO7 on cell viability, proliferation, and VEGF levels. 

(A) Subconfluent (90%) monolayers of HaCaT cells were treated with varying doses (0.1, 1, 

10 and 25 µg/cm2) of F-TiO2 (F), UF-TiO2 (UF) and H2TiO7 (NP) for 24 h and analyzed for 

cell viability using MTT assay. (B) HaCaT cells were treated as above and analyzed after 48 

h for cell proliferation using CyQUANT® dye reagent. (C) HaCaT cells were treated with 

varying doses (0.1, 1 and 10 µg/cm2) of F-TiO2 (F), UF-TiO2 (UF) and H2TiO7 (NP) for 24 

h and analyzed for VEGF levels by ELISA. Data are mean±S.E.M. (n = 3). *p <0.05.
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Figure 5. 
Effects of F-TiO2, UF-TiO2 and H2TiO7 on cell survival and EMT proteins. (A) 

Subconfluent (90%) monolayers of HaCaT cells were treated with varying doses (0.1, 1 and 

10 µg/cm2) of F-TiO2 (F), UF-TiO2 (UF), and H2TiO7 (NP) for 6 h before cell lysates were 

acquired and analyzed for phosphorylated and total EGFR and Akt proteins. GAPDH was 

used as a loading control. (B) Cells were seeded as above and treated with two doses (0.1 

and 10 µg/cm2) of UF-TiO2 (UF) and H2TiO7 (NP) for 12 h and 24 h and cell lysates were 

analyzed for β-Catenin, E-Cadherin and p53 proteins by Western blotting. β-Actin was used 

as a loading control.
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Figure 6. 
Effects of F-TiO2, UF-TiO2 and H2TiO7 on human lung epithelial and fibroblast cells. 

Subconfluent (90%) monolayers of (A) Beas-2B and (B) CRL-1490 cells were treated with 

varying doses (0.1, 1, 10 and 100 µg/cm2) of UF-TiO2 (UF) and H2TiO7 (NP) for 24 h and 

48h and analyzed for cell proliferation using the CyQUANT dye reagent. (C) Beas-2B and 

CRL-1490 cells were seeded as above and treated with varying doses (0.1, 1, 10 and 100 

µg/cm2) of UF-TiO2 (UF) and H2TiO7 (NP) for 24 h and analyzed for collagen levels using 

the Sircol® collagen assay kit. Data are mean ± S.E.M. (n = 3). *p < 0.05.
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